• Help
  • Find
  • Facebook
  • Twitter


Mailing adress:


Technopôle Helioparc

2 avenue Pierre Angot

64053 Pau Cedex 9



Opening hours : 8h30-12h00 / 13h30-17h00

Phone: 00 33 (0)5 40 17 50 00

E-mail (contact-iprem @ univ-pau.fr)


Head of research unit:

Director : Ryszard Lobinski (ryszard.lobinski @ univ-pau.fr)

Assistant director : Billon Laurent (laurent.billon @ univ-pau.fr)





Traductions :
  • Voir la page en français
You are here:

FT MS equipment

The FT MS equipment of the MARSS (MAss Spectrometry for Reactivity and Speciation Sciences) project consists of two high resolution electrospray/atmospheric pressure ionization Orbitrap MSn instruments coupled to chromatographic nanoHPLC and UPLC separation systems and complemented by elemental plasma spectrometry (ICP MS). The resolution offered reaches 280 000 for QExactive+ and 1 000 000 (3s transients at m/z 200) for Lumos Fusion MS (ThermoScientific) instruments, respectively. The precision of mass determination down to 1 ppm is possible. The platform allows quantitative determination of known and identification of unknown organic and metal-organic molecules covering large molecular mass range from 100 to 100,000 Da. The performance can be further improved by the use of a state-of-the-art sample nanospray introduction NanoMate system handling micro- and nanovolume liquid samples and allowing surface analysis.

The current research topics in environmental sciences include:

  • identification of novel environmental contaminants (e.g., products of aromatic hydrocarbons degradation, industrial wastewater residues and metabolites),
  • identification of metallometabolites in plants,
  • quantification of small organic molecules of natural and anthropogenic origin,
  • exploratory studies of emerging contaminants.

The recent successful studies on the energy related environmental problems have been focused on the determination of metabolites of BTEX (benzene-toluene-ethylbenzene-xylene) anaerobic degradation in groundwater in the vicinity of aquifers hosting natural gas storage and the determination of non-radioactive passive water fluorobenzoic acid tracers for oil field applications.

The contamination problems related to high natural metal occurrence and mining activities have been addressed in the frame of both fundamental and application oriented projects. They included the identification and quantification of iron-metabolites in plants species tolerant to excess Fe and recommended for the recovery of degraded post-mining waste areas, the identification of the biomolecules involved in Al detoxification in plants, nickel hyperaccumulation and Cd, Zn and Cu detoxification.