

AVIS DE SOUTENANCE DE THÈSE

Monsieur Guillaume MAGESTE

Candidat au Doctorat de Chimie spécialité Polymères, de l'Université de Pau et des Pays de l'Adour

Soutiendra publiquement sa thèse intitulée :

Colloïdes polymères photo-actifs avancés synthétisés par polymérisation RAFT en milieu dispersé pour la production interfaciale d'oxygène singulet photosensibilisée : vers des procédés durables.

Dirigée par Madame MAUD SAVE et Monsieur THIERRY PIGOT

le 1 décembre 2025 à 9h30 Lieu : IPREM 1, Technopôle Helioparc, 2 Av. du Président Pierre Angot, 64053 Pau Cedex 9 Salle : Amphithéâtre

Composition du jury:

Mme Maud SAVE, Directeur de recherche CNRS	Université de Pau et des Pays de l'Adour	Directrice de thèse
M. Thierry PIGOT, Professeur des universités	Université de Pau et des Pays de l'Adour	Co-directeur de thèse
M. Mickael LE BECHEC, Ingénieur d'études CNRS	Université de Pau et des Pays de l'Adour	Co-encadrant de thèse
HDR		
M. Franck D'AGOSTO, Directeur de recherche	Université Claude Bernard - Lyon 1	Rapporteur
M. Olivier SOPPERA, Directeur de recherche CNRS	Université de Haute-Alsace	Rapporteur
Mme Karine LOUBIERE, Directeur de recherche CNRS	Centre national de la recherche scientifique (CNRS)	Examinatrice
Mme Pilar FERNANDEZ-IBANEZ, Professeur	Ulster University	Examinatrice

AVIS DE SOUTENANCE DE THÈSE de Monsieur Guillaume MAGESTE

Mots-clés : colloïdes polymères photo-actifs, molécules biosourcées, processus durable, chimie des polymères, photochimie

Résumé:

L'absorption de la lumière visible pour mettre en œuvre des procédés à faible consommation d'énergie s'aligne sur plusieurs principes de la chimie verte. La production d'oxygène singulet photosensibilisé, impliquant la lumière, l'oxygène de l'air et une faible quantité de photosensibilisateur, est particulièrement intéressante par exemple pour la synthèse d'intermédiaires de la chimie fine, la photo-décontamination de l'air ou de l'eau ou l'inactivation photodynamique de bactéries. L'immobilisation des photosensibilisateurs sur des supports solides améliore leur manipulation, leur recyclabilité ainsi que leur photostabilité. Les colloïdes polymères submicroniques constituent des supports polyvalents et prometteurs pour la production photosensibilisée d'oxygène singulet. Afin de développer un procédé photochimique durable et efficace, ce travail vise à concevoir des colloïdes polymères cœur-écorce photoactifs submicroniques directement dans l'éthanol, répondant ainsi au défi de la photo-oxydation en flux continu de molécules biosourcées en milieu éthanolique, tout en ouvrant la voie vers le recyclage du photocatalyseur organique supporté, le Rose de Bengale (RB), par nanofiltration (collaboration laboratoire LGC, Université Paul Sabatier Toulouse). Cette étude porte sur la synthèse de trois séries de colloïdes polymères à base de photosensibilisateurs, obtenus par polymérisation RAFT en dispersion dans l'éthanol. La méthodologie d'autoassemblage induit par polymérisation (PISA) a permis de concevoir des latex cœur-écorce monodisperses sans tensio-actif. Par la détermination du rendement quantique, moyen de production d'oxygène singulet, nous avons démontré l'efficacité de la production d'oxygène singulet à l'interface particule/alcool sous irradiation par lumière visible. L'étude propose d'examiner l'influence possible de certains paramètres structuraux, tels que la nature chimique du bloc stabilisant externe, le degré de polymérisation du bloc interne solvophobe modulant la taille des colloïdes, ou le taux de photosensibilisateur RB. Afin de permettre le recyclage de ce dernier après photo-oxydation en flux continu de molécules biosourcées, des copolymères PMMA-RB seront également synthétisés. Leur comportement thermosensible de type UCST (Upper critical solution temperature) dans l'éthanol offre une autre alternative pour favoriser la récupération du photocatalyseur par simple précipitation thermo-induite. Par ailleurs, une autre génération de colloïdes polymères filmogènes dispersés en phase aqueuse et fonctionnalisés par le photosensibilisateur RB en écorce a été mise à profit pour préparer des films photoactifs par simple dépôt. En collaboration avec Ulster University (Belfast, Royaume-Uni), ce travail de thèse a permis de démontrer leur caractère antibactérien photo-induit efficace sous lumière blanche de faible intensité.