Liquid Crystalline Derivatives of closo-Boranes as Novel Materials for Display and Battery Applications

Piotr Kaszynski ${ }^{\text {a,b }}$
${ }^{a}$ Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland
${ }^{b}$ Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37130, USA
Piotr.kaszynski@mtsu.edu

Abstract

A recently discovered method for selective activation of the $\mathrm{B}-\mathrm{H}$ bonds in closo-borates towards nucleophilic substitution through aryliodonium zwitterions ${ }^{[1]}$ has opened up a convenient access to a large variety of polar and ionic self-organizing materials. ${ }^{[2]}$ Such zwitterions are easily obtained from closo-borates and $\operatorname{ArI}(\mathrm{OAc})_{2}$ and undergo facile reactions with nucleophiles according to the 10-I-3 or 9-I-2 mechanism. Appropriate derivatization of the resulting functionalized closo-borates leads to polar or ionic liquid crystals. The former are pyridinium, sulfonium, or quinuclidinium zwitterionic derivatives I and II, and are of interest as high dielectric anisotropy ($\Delta \varepsilon$) additives to materials for LCD applications. ${ }^{[3]}$ Ionic liquid crystals (ILC) are being developed as anisotropic ion conductors (electrolytes) for battery applications.

This work is supported by the NCN (OPUS 2015/17/B/ST5/02801), TEAM/3, and NSF (DMR-1611250) grants.

REFERENCES

[1] Kaszyński, P.; Ringstrand, B. Angew. Chem. Int. Ed. 2015, 54, 6576.
[2] Ringstrand, B. and Kaszyński, P. Acc. Chem. Res. 2013, 46, 214. Kaszynski, P. in "Boron Science: New Technologies \& Applications", N. Hosmane, Ed.; CRC Press, 2012, pp 305.
[3] For example: Pecyna, J.; Kaszyński, P.; Ringstrand, B.; Pociecha, D.; Pakhomov, S.; Douglass, A. G.; Young, V. G. Jr. Inorg. Chem. 2016, 55, 4016. Pecyna, J.; Żurawiński, R.; Kaszyński P.; Pociecha, D.; Zagórski, P.; Pakhomov, S. Eur. J. Inorg. Chem., 2016, 2923.

